

Experimental Noize

FXCore

Audio Effects DSP

©2020 Experimental Noize

FXCore_DS_V1

Page 1

3.3V operation

32-bit data path and operations

Both saturating and non-saturating math

32-bit and 64-bit accumulators

32K x 16-bit circular delay RAM

LOG and EXP instructions

16 core registers

128 x 32-bit RAM based registers

4 digital SIN LFOs, 2 Ramp LFOs

Built in FLASH for 16 programs

I2C interface for programming FLASH

User settable I2C address via pins

2 I2S interfaces

Adjustable sample rate, master or slave

selectable

6 12-bit POT inputs

5 user switch inputs, 1 tap tempo input

2 user outputs

1 enable/bypass switch input

Experimental Noize

FXCore

Audio Effects DSP

©2020 Experimental Noize

FXCore_DS_V1

Page 2

FXCore Package

Experimental Noize

FXCore

Audio Effects DSP

©2020 Experimental Noize

FXCore_DS_V1

Page 3

FXCore Pin List

Function Direction Type Notes

1 Pot input 0 Input Analog 12-bit ADC potentiometer in

2 Pot input 1 Input Analog 12-bit ADC potentiometer in

3 Pot input 2 Input Analog 12-bit ADC potentiometer in

4 Pot input 3 Input Analog 12-bit ADC potentiometer in

5 Pot input 4 Input Analog 12-bit ADC potentiometer in

6 Pot input 5 Input Analog 12-bit ADC potentiometer in

7 GND PWR Ground

8 VDD PWR +3.3V

9 nRESET Input NO PU/PD Reset, low to reset

10 PLL Range 0 Input Pull up See “PLL Range Settings”

11 PLL Range 1 Input Pull up See “PLL Range Settings”

12 Switch 0 Input Pull up Switch input

13 Switch 1 Input Pull up Switch input

14 Switch 2 Input Pull up Switch input

15 Switch 3 Input Pull up Switch input

16 Switch 4 Input Pull up Switch input

17 User 0 Output Max 10mA User output 10mA sink/source

18 User 1 Output Max 10mA User output 10mA sink/source

19 VDD PWR +3.3V

20 GND PWR Ground

21 Master/nSlave Input Pull up Master/slave select

22 Overflow LED Output Max 10mA Overflow output

23 Tap Tempo input Input Pull up Switch input for tap tempo

24 Enable/nBypass Input Pull up Enable/bypass select

25 GND PWR Ground

26 VDD PWR +3.3V

27 Program 0 Input NO PU/PD Program select input

28 Program 1 Input NO PU/PD Program select input

29 Program 2 Input NO PU/PD Program select input

30 Program 3 Input NO PU/PD Program select input

31 Oscillator input Input NO PU/PD High speed clock input

32 I_TESTO_4 NO CONNECT NO CONNECT

33 I_TESTO_1 NO CONNECT NO CONNECT

34 VDD PWR +3.3

35 GND PWR Ground

36 I_TESTO_2 NO CONNECT NO CONNECT

37 I_TESTO_3 NO CONNECT NO CONNECT

Experimental Noize

FXCore

Audio Effects DSP

©2020 Experimental Noize

FXCore_DS_V1

Page 4

38 Test 1 NO CONNECT NO CONNECT

39 VDD PWR +3.3V

40 GND PWR Ground

41 SDA In/Out Open collector I2S serial data

42 SCL Input Open collector I2C serial clock

43 LRCK 0 In/Out

Output when master, input
when slave

44 SCK 1 Input NO PU/PD Always an input, MUST tie to
SCK0

45 SDO 0 Output

Data out to CODECs SDI

46 SDO 1 Output

Data out to CODECs SDI

47 MCLKOUT In/Out Output Output when master, tri-state
when slave

48 nCODEC Reset Output

Output to CODEC reset

49 SCK 0 In/Out

Output when master, input
when slave

50 SDI 0 Input NO PU/PD Data in from CODECs SDO, tie to
ground if unused

51 SDI 1 Input NO PU/PD Data in from CODECs SDO, tie to
ground if unused

52 LRCK 1 Input NO PU/PD Always an input, MUST tie to
LRCK 0

53 Test 2 NO CONNECT NO CONNECT

54 VDD PWR +3.3V

55 GND PWR Ground

56 I2CA0 Input Pull up I2C address pin

57 I2CA1 Input Pull up I2C address pin

58 I2CA2 Input Pull up I2C address pin

59 GND PWR Ground

60 VDD PWR +3.3V

61 I2CA3 Input Pull up I2C address pin

62 I2CA4 Input Pull up I2C address pin

63 I2CA5 Input Pull up I2C address pin

64 I2CA6 Input Pull up I2C address pin

NOTE: All pins marked “NO CONNECT” MUST be left unconnected on the PCB.

Experimental Noize

FXCore

Audio Effects DSP

©2020 Experimental Noize

FXCore_DS_V1

Page 5

Electrical Characteristics

Parameter Min Typ Max Unit

DC operating voltage (VDD) 3.0 3.3 3.6 VDC

DC operating current1 - 110 - mA

Max current sink/source through USER0, USER1 or
OFLO (IIO)

- - 10 mA

Operating temperature range -30 (-22) - +80 (+176) °C (°F)

Storage temperature range -50 (-58) - +140
(+284)

°C (°F)

Clock range in to pin 312 10 12.288 12.3 MHz

Sample rate range as master2 9.766 48 48.046 KHz

Sample rate range as slave3 0 - 96 KHz

POT0 – POT5 source impedance - - 10 KΩ

Internal pull-up equiv resistance4 5 - 50 KΩ

Input low voltage to SWO – SW4, ENABLE and TAP GND - 0.2* VDD VDC

Input high voltage to SWO – SW4, ENABLE and TAP 0.8* VDD VDD VDC

Output low voltage to USER0, USER1 and OFLO5 0 - 0.4 VDC

Output high voltage to USER0, USER1 and OFLO5 2.4 - VDD VDC

Estimated FLASH endurance (Erase/Write cycles)6 10,000

NOTES:
1 : Actual current draw is dependent on program and current draw on USER0, USER1 and OFLO
2 : The FXCore is designed to run internally at a high speed while dividing down the clock for the desired

sample rate according to the PLL pin settings. If the desired sample rate cannot be accomplished by

using the PLL divisor settings and keeping the source clock in the required range then the FXCore should

be run in slave mode and the desired sample rate applied to it. In slave mode the PLL and sample rate

clock are “decoupled”.
3 : In slave mode the desired sample rate clock must be applied to LRCK0 and LRCK1 and the properly

phase aligned bit clock to SCK0 and SCK1. The clock to SCK0/1 is 64x sample clock and must have falling

edge aligned with changing LRCK0/1 clock edge.
4 : This value is not tested in production
5 : These values were characterized at IIO = 10mA, VDD = 3.3V
6 : This is an estimate value based on process information, for development users should use FXCore

Assembler and dev board which saves the flash by directly loading and running from RAM.

Experimental Noize

FXCore

Audio Effects DSP

©2020 Experimental Noize

FXCore_DS_V1

Page 6

General Description

FXCore from Experimental Noize is a DSP designed for creating audio effects in pro-audio devices.

FXCore can operate as a standalone device when paired with appropriate CODECs where it generates all

necessary clocks or as part of a more complex system where it will lock to the word clock and bit clock

provided by another part of the system.

The internal execution speed of the FXCore is based solely on the high speed clock applied to pin 31 OSC

INPUT. When in master mode the word clock LRCK0/1 and bit clock SCK0/1 are derived from this high

speed clock according to the settings of pins 10 “PLL RANGE 0” and 11 “PLL RANGE 1” as detailed later in

this document. When in slave mode the word clock and bit clock pins are inputs and execution of the

users program will begin on the falling edge of the word clock.

FXCore can store up to 16 programs and their associated register preset values in its internal FLASH

memory. FXCore instructions are not all single clock instructions, as a result it is possible to write a

program longer than there is time to execute. The FXCore assembler estimates the total core usage of

your program when it is assembled and prints this information under the code in the listing file.

The FXCore was developed around a block philosophy, each block executes a specific function allowing

the programmer to focus on development of their application rather than being concerned about

peripheral issues such as getting digital audio data in to and out of the chip.

These blocks contain Special Function Registers (SFRs) that may be read and/or written to under

program control, at program load or at boot of the FXCore depending upon the use of the SFR. Some of

these SFRs set or control features of a block while other provide information about the status of blocks.

For example the frequency control SFR for an LFO can be both read and written under program control

as well as preset in the program header but the register containing status flags (i.e. clipping, etc.) may

only be read under program control while the register for setting the debounce time of a switch may

only be preset in the program header and may not be read or written by a user program.

Additionally, these blocks may contain sub-blocks that add additional functionality or resources to the

block. The Core block contains a sub-block called Core Registers (CREGs) that are a set of tightly coupled

register that the Arithmetic and Logic Unit (ALU) may use as source and destination registers depending

on the instruction. There is also a sub-block called Memory Registers (MREGs) that are not tightly

coupled to the ALU but are available to the core as additional 32-bit storage.

Block Descriptions

Block 1: FLASH

The FLASH memory block can store up to 16 programs and their associated register preset values.

During normal RUN operation the programs to run is selected by the PGM03 pins and is then loaded into

the Execution RAM (block 3).

Experimental Noize

FXCore

Audio Effects DSP

©2020 Experimental Noize

FXCore_DS_V1

Page 7

Program Number - PGMX relationships

Program# PGM3 PGM2 PGM1 PGM0

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

10 1 0 1 0

11 1 0 1 1

12 1 1 0 0

13 1 1 0 1

14 1 1 1 0

15 1 1 1 1

The FLASH is arranged as 16 blocks, one for each program. Each block contains up to 1K instructions and

the preset values for CREGs, MREGs and SFRs for that program. By including values for CREG, MREG and

SFR registers it allows each program to preset these values without wasting instructions.

Note that the FXCore may not be able to execute all 1K instructions in a sample period, each instruction

in the FXCore takes 1 or more INSCLKs (instruction clocks) to execute therefor the total number of

INSCLKs a program takes to execute is what will define the maximum number of instructions, up to

1024, that may be executed in a sample period. There are approximately 3500 INSCLKs available per

sample period at 48KHz, note that at lower sample rates more INSCLKS are available.

Programs must not exceed the INSCLKs available, doing so may not allow internal registers to properly

transfer audio to/from the I2S lines or memory areas. The FXCore assembler will report after

compilation the expected number of INSCLKs a program uses and will error out if a program attempts to

exceed this number. A program which cannot complete at 48KHz sample rate may execute fine at 32KHz

sample rate.

On power up, exit of programming mode or a state change on a PGMX pin in normal mode the selected

program is loaded from the internal FLASH to the Execution RAM (block 3). During this loading operation

the Delay Memory (block 8) is cleared, the register preset values are loaded into the target registers and

the output is muted. If a user selects a program location in the FLASH that has not actually been loaded

with a program or an error occurs with reading from the FLASH the FXCore will leave the outputs muted

and enter an error state that can be cleared by selecting a different program. This allows an end user to

recover to an operational state by simply changing the selected program.

Experimental Noize

FXCore

Audio Effects DSP

©2020 Experimental Noize

FXCore_DS_V1

Page 8

The program select pin debounce time is set by the PRGDBRLD SFR, this debounce time is set as a

number of samples. This SFR can only be set by a .SREG directive.

A list of the default programs in the FLASH is included at the end of this datasheet.

Block 2: I2C Bus Interface

Programming of the FLASH memory block is accomplished through the I2C bus. The FXCore must first be

put into PROG mode and a specific set of steps must be followed to write a user program to the FLASH

memory. See the document “Communicating with the FXCore” for details on these steps.

The ICA0 – ICA6 pins set the I2C address of the FXCore. Care should be used setting this address so as to

not conflict with other devices on the bus or that may be plugged into the bus (i.e. an in circuit

programmer). Do not set the address to the ranges of 0x00-0x07 or 0x78-0x7F, these are reserved

addresses and many I2C devices will not respond to them.

The SDA and SCL pins are the data and clock pins for I2C communication. It is recommended that they

each be pulled high with a 1K5 ohm resistor to keep them at a high level for the I2C interface and to

allow easy connection of an in circuit programmer should it be required later.

Block 3: Execution RAM

While programs are stored in the FLASH memory (block 1) they must be copied to the Execution RAM as

FLASH is too slow to execute from. Additionally the Execution RAM is used as a buffer for programming

the FLASH memory, as a result in PROG mode programs are actually loaded into Execution RAM and may

be executed rather than being written to FLASH. This allow the developer to make changes to their code

without over stressing the FLASH memory. For details on this please see the document “Communicating

with the FXCore”

Block 4: Program Counter

At the start of each sample period the program counter is rest to 0 and increments as each instruction is

executed. The value can be changed based on the instruction executed, any of the jump instructions can

add an offset to the counter to point to a location further down in the code.

Block 5: Instruction Decoder

The instruction decoder takes each instruction, separates it into its parts and can affect the operations

in the CORE (block 7), Address Generation Unit (AGU) (block 6) and the Program Counter (block 4).

Block 6: Address Generation Unit (AGU)

The AGU generates the address for reading and writing to the Delay RAM (block 8). Typically the address

Experimental Noize

FXCore

Audio Effects DSP

©2020 Experimental Noize

FXCore_DS_V1

Page 9

in the instruction is added to a counter in the AGU that is decremented at the start of each sample

period. Some instructions such as RDDELX do not have the address in them and use a core register as a

pointer into memory. Additionally some instruction such as RDDIRX both lack an explicit address and

disable the addition of the counter to the pointer.

Additionally the LFOs can be added in the AGU to allow for modulating pointers to the Delay RAM as

well as for pitch shifting operations.

Block 7: CORE

The CORE Block contains the Arithmetic and Logic Unit (ALU), CORE registers (CREGs), Memory registers

(MREGs) and the FLAGS register.

The ALU consists of the 32-bit multiplier, adder, saturation units, logic block and the 64-bit MAC. These

functions are controlled as a result of the Instruction Decoder (block 5).

The CORE is register based, in general data is moved into registers, the data is then operated on and the

result placed in a register. Data in a register can be written to Delay Memory (block 8), MREGs or to

another location such as an output register or other SFR.

Experimental Noize

FXCore

Audio Effects DSP

©2020 Experimental Noize

FXCore_DS_V1

Page 10

Most instructions use two core registers as operands and place the result in ACC32. While a user is

generally able to use any CREG there are a few exceptions with some of the extended operations that

require data be placed in CREG R15, these instructions require more information than can be encoded in

the instruction. In these cases R15 may be called PARAM0.

There are two multipliers in the CORE, the first is a 32x32 bit multiplier that takes the top 32-bits as the

result. Any 2 CREGs can be used as the sources for the multiply and the result of a multiply are placed in

ACC32. The result can then be moved out of ACC32 to another CREG or MREG or the top 16-bits can be

written to Delay Memory (block 8). Some operations allow for use of an immediate value in the

instruction.

The second multiplier is a 32x32 bit multiplier to a 64-bit accumulator for high precision MAC

operations. The MAC operations can operate in two different manners, the first is treating the multiplier

and multiplicand as S.31 format numbers resulting in a S.63 format product and the accumulator is

treated as a S.63 format adder. This is useful for operations that you know will never exceed +/-1.0 or

where clipping to such values is acceptable. In its second mode the multiplicand is shifted 3 bits right to

create 3 bits of head room and the accumulator format is S3.60. This allows for some intermediate

values to increase to +/-8.0 before any clipping will occur.

The 64-bit accumulator is addressable as two 32-bit registers to allow programs to move the values into

32-bit registers. This allows users to do things like save the result of a high precision filter to two MREGs

between iterations of the program.

While the 32-bit ALU and 64-bit MAC are in parallel they may not operate concurrently as only one can

select what registers to operate on at a time. Core (CREG) registers:

Name Encoding Type Remark

R0 00000 R/W General use

R1 00001 R/W General use

R2 00010 R/W General use

R3 00011 R/W General use

R4 00100 R/W General use

R5 00101 R/W General use

R6 00110 R/W General use

R7 00111 R/W General use

R8 01000 R/W General use

R9 01001 R/W General use

R10 01010 R/W General use

R11 01011 R/W General use

R12 01100 R/W General use

R13 01101 R/W General use

R14 01110 R/W General use

R15 01111 R/W General use/PARAM0

ACC32 10000 R/W General use/result

FLAGS 10001 R Read only

Experimental Noize

FXCore

Audio Effects DSP

©2020 Experimental Noize

FXCore_DS_V1

Page 11

The CORE contains the bank of 128 32-bit MREGs. While the data in the MREGs must be moved to

CREGs to be operated on they are faster to access than the delay memory. They may also be used as a

lookup table by an indirect access method. See the FXCore instruction set for further information.

The CORE also contains the FLAGS register which provides status information for the program to act on:

Bit Name Meaning

15 OUT3OFLO Output 3 overflow

14 OUT2OFLO Output 2 overflow

13 OUT1OFLO Output 1 overflow

12 OUT0OFLO Output 0 overflow

11 IN3OFLO Input 3 clip

10 IN2OFLO Input 2 clip

9 IN1OFLO Input 1 clip

8 IN0OFLO Input 0 clip

7 XXX RESERVED

6 XXX RESERVED

5 TB2nTB1 0: Tap button “1” event
1: Tap button “2” event

4 TAPSTKY TAP sticky event, user has
pressed the tap button for

longer than TAPSTKRLD

3 NEWTT New tap tempo value in
TAPTEMPO

2 TAPRE Tap button release event, user
stopped pressing the tap button

1 TAPPE Tap button push event, user
started pressing the tap button

0 TAPDB Debounced tap button level, 0 if
pressed and 1 if not pressed

Experimental Noize

FXCore

Audio Effects DSP

©2020 Experimental Noize

FXCore_DS_V1

Page 12

The CORE also contains a read only SFR called BOOTSTAT which contains information about the status of

the FXCore. These pins and values are only read and recorded at boot.

Bit Name Comment

0 PLLRANGE0 The value of the PLLRANGE0 pin

1 PLLRANGE1 The value of the PLLRANGE1 pin

2 MNS 1 if in master mode, 0 if in slave mode

3 I2CA0 The value of the I2CA0 pin

4 I2CA1 The value of the I2CA1 pin

5 I2CA2 The value of the I2CA2 pin

6 I2CA3 The value of the I2CA3 pin

7 I2CA4 The value of the I2CA4 pin

8 I2CA5 The value of the I2CA5 pin

9 I2CA6 The value of the I2CA6 pin

10 - 0

11 - 0

12 - 0

13 - 0

14 - 0

15 - 0

16 PR0 1: program 0 slot contains a program, 0: program slot is empty

17 PR1 1: program 1 slot contains a program, 0: program slot is empty

18 PR2 1: program 2 slot contains a program, 0: program slot is empty

19 PR3 1: program 3 slot contains a program, 0: program slot is empty

20 PR4 1: program 4 slot contains a program, 0: program slot is empty

21 PR5 1: program 5 slot contains a program, 0: program slot is empty

22 PR6 1: program 6 slot contains a program, 0: program slot is empty

23 PR7 1: program 7 slot contains a program, 0: program slot is empty

24 PR8 1: program 8 slot contains a program, 0: program slot is empty

25 PR9 1: program 9 slot contains a program, 0: program slot is empty

26 PR10 1: program 10 slot contains a program, 0: program slot is empty

27 PR11 1: program 11 slot contains a program, 0: program slot is empty

28 PR12 1: program 12 slot contains a program, 0: program slot is empty

29 PR13 1: program 13 slot contains a program, 0: program slot is empty

30 PR14 1: program 14 slot contains a program, 0: program slot is empty

31 PR15 1: program 15 slot contains a program, 0: program slot is empty

NOTE: While BOOTSTAT is a 32-bit word the mask values are 16-bit in the FXCore Assembler so the

masks for things like PR0 – PR15 must be loaded as a 16-bit value and shifted up to the proper position.

Block 8: Delay Memory

The Delay Memory (block 8) consists of a 32Kx16 bank of SRAM that allows for 1 second of delay at

32KHz sample rate. This block is typically used as a rotating buffer for effects like reverb, delay, etc. but

may be addressed in a direct manner for other effects.

Experimental Noize

FXCore

Audio Effects DSP

©2020 Experimental Noize

FXCore_DS_V1

Page 13

Block 9: Low Frequency Oscillators (LFOs)

The LFO block generates low frequency SIN and COS waves for use as modulation sources for effects like

chorus, phasing, etc. The block contains 4 SIN/COS LFOs and 2 RAMP generators for pitch shifting.

Each LFO has an associated special function register (SFR) to control its frequency, these SFRs are

LFO0_F, LFO1_F, LFO2_F and LFO3_F. To calculate the value to write to an LFOX_F SFR to cause the

associated LFO to generate the SIN and COS waves at a specific frequency use:

C = (231 - 1) * (2*pi*F)/Fs

F = Target frequency in hertz

Fs = Sample rate

pi = 3.14159…

Each LFO produces 2 outputs: SIN and COS. These values may be read from the LFOX_S and LFOX_C (X is

0 – 3) SFRs to read the SIN and COS values respectively. These are 32-bit values and range from -1.0 to

+1.0.

Experimental Noize

FXCore

Audio Effects DSP

©2020 Experimental Noize

FXCore_DS_V1

Page 14

These LFO generators are designed to create SIN and COS waveforms in the 0 to 20Hz range. Using them

to generate higher frequencies will introduce distortion into the resulting waveform.

The LFOs are used in instructions like CHR to create a chorus effect on a delay line in the Delay Memory

(block 8). When used in the CHR instruction the LFO is automatically scaled to be between 0 and 1.0 so it

can be multiplied by the length of the delay line then added to the base address to generate the address

to read from. This has a specific advantage over older methods which used a +/- LFO value and used the

center of the delay line as the base address to oscillate about. In the older method if the LFO was scaled

down within the delay line the LFO still oscillated about the center of the delay, this introduced a delay

between the head of the delay and the actual portion of the delay being chorused. In this newer

implementation the LFO always choruses from the head of the delay so as it is scaled down no delay is

introduced.

Each RAMP generator has an associated SFR to set the frequency of the RAMP. These SFRs are RAMP0_F

and RAMP1_F. Calculating the coefficient for the RAMP generators is a little more complex than for the

LFOs as the RAMP generators are used to shift the pitch of a signal and this depends on both the length

of the delay line and if the signal is being pitched up or down. To simplify this we base the equations on

a selection of four delay lengths of 512, 1024, 2048 or 4096:

To pitch up we set the coefficient to the ramp as:

C = -223 * (2N −1)*(512/L)

N = Desired amount of pitch shift in octaves

L = Length of delay line used (512, 1024, 2048 or 4096)

For pitching down it is:

C = 223 * (1-(1/2N))*(512/L)

N = Desired amount of pitch shift in octaves

L = Length of delay line used (512, 1024, 2048 or 4096)

If the user wishes to use the ramp generator to create and use a ramp wave in their program directly the

coefficient for a specific frequency of ramp can be calculated by:

C = (f/Fs) * 232

f = Desired ramp frequency

Fs = Sample rate

The RAMP values can be read by reading the RAMP0_R and RAMP1_R SRFs.

All LFO and RAMP SFRs (LFOX_S, LFOX_C, RAMPX_R) are updated each sample period and as a result

maintain the same value for the duration of a user’s program.

Experimental Noize

FXCore

Audio Effects DSP

©2020 Experimental Noize

FXCore_DS_V1

Page 15

Block 10: I2S and PLL

PLL Range Settings

When operating standalone or as the master clock device the FXCore can operate at different sample

rates so you can select the one that is best for your project. “Clock” refers to the clock applied to pin 31

“OSC input”, setting pins 10 “PLL RANGE 0” and 11 “PLL RANGE 1” as specified in the below table will

select the associated sample rate LRCK when in master mode where pin 21 “Master/nSlave” is set high.

When pin 21 is set low the FXCore is locking to an external master word clock and pins 10 and 11 have

no effect on sample rate.

Experimental Noize

FXCore

Audio Effects DSP

©2020 Experimental Noize

FXCore_DS_V1

Page 16

PLL Range 1
Pin 11

PLL Range 0
Pin 10

Pin 31 Clock = 12.288MHz Pin 31 Clock = 11.2896MHz

0 0 MCLK = 3.072MHz
SCK = 768KHz
LRCK = 12KHz

MCLK = 2.8224MHz
SCK = 705.6KHz
LRCK = 11.025KHz

0 1 MCLK = 6.144MHz
SCK = 1.536MHz
LRCK = 24KHz

MCLK = 5.6448MHz
SCK = 1.4112MHz
LRCK = 22.05KHz

1 0 MCLK = 8.192MHz
SCK = 2.048MHz
LRCK = 32KHz

MCLK = 7.5264MHz
SCK = 1.8816MHz
LRCK = 29.4KHz

1 1 MCLK = 12.288MHz
SCK = 3.072MHz
LRCK = 48KHz

MCLK = 11.2896MHz
SCK = 2.8224MHz
LRCK = 44.1KHz

 Generated MCLK, SCK and LRCK when FXCore is in master mode and the specified clock is

 applied to pin 31.

I2S Digital Audio Interfaces

The FXCore provides two standard audio interfaces allowing for up to four input and 4 output channels.

Interface 0 for channels 0 and 1 will run as either a master or slave depending on the state of pin 21,

interface 1 for channels 2 and 3 is always a slave and its word clock (LRCK1) and bit clock (SCK1) lines

should be connected to interface 0’s word clock (LRCK0) and bit clock (SCK0) lines respectively. The SDO

lines of the sources (i.e. CODECs) should be connected to the SDI lines of the FXCore and the SDI lines of

the sources should be connected to the SDO lines of the FXCore. The timing relationship between LRCK,

SCK and SDI/SDO is illustrated in the following diagram:

Note that in master mode the exact timing will depend on the clock being supplied to pin 31 and the

PLL0/1 settings. In slave mode the timing is defined by the system master. In both master and slave

mode both I2S interfaces must be phase aligned, as the second I2S is always in slave mode LRCK1 should

always be connected to LRCK0 and SCK1 should always be connected to SCK0.

The inputs can be read in an effects program by reading the special function registers IN0 to IN3, writing

to the outputs is similarly done by writing to the special function registers OUT0 to OUT3.

If any of the inputs or outputs are within 0.5db of full-scale then the corresponding bit in the CORE

(block 7) FLAGS register will be set and the OFLO LED will turn on. The minimum on time for the OFLO

LED is controlled by the SFR OFLORLD and is the minimum on time in samples. OFLORLD may only be set

using a .SREG directive.

The FXCore uses the full 32-bits for each channel on the I2S interface.

Experimental Noize

FXCore

Audio Effects DSP

©2020 Experimental Noize

FXCore_DS_V1

Page 17

Block 11: TAP Tempo

The TAP pin is the input for a tap tempo button. A normally open push button switch that connects to

ground when pushed should be used here, the TAP pin has a weak pull-up built into the pin.

The tap tempo block inside the FXCore will handle all aspects of debounce, counting samples between

presses, etc.

Typically the TAP Tempo (block 11) counts the number of samples between successive taps. If a user

enters a first tap and waits longer than the time out period to enter a second tap the block will reset its

self. In addition to reading the number of samples between taps the program can also determine which

tap has occurred, if there is a new value and if the user is holding the tap switch closed for some period

of samples known as ‘sticky”. These items are read from or controlled by a number of different SFRs:

TAPTEMPO : The number of sample periods between two successive taps.

MAXTEMPO : The maximum number of samples allowed between 2 successive taps before the block will

reset its self.

TAPSTKRLD : The number of samples the user must push a tap switch for to register the switch as

“sticky”. This SFR can only be set with a .SREG statement.

TAPDBRLD : The number of samples to debounce the tap input for. This SFR can only be set with a .SREG

statement.

In addition to the above SFRs the tap block controls bits 0 to 5 in the FLAGS register in the CORE (block

7). Please see Block 7: CORE above for information on these bits.

For a more information and example code see:

“Tap Tempo Operation” section of the FXCore Instruction Set
Application note AN-4 “Using the Tap Tempo”
Default program 4 “Delay”

Experimental Noize

FXCore

Audio Effects DSP

©2020 Experimental Noize

FXCore_DS_V1

Page 18

Block 12: Binary I/O

Pins 12 to 16, SW0 – SW4, are for designers to wire switches to that can be read during program

execution. These pins have a weak internal pull-up so that an unconnected pin will be read as a “1” in

the code. Pins are sampled at the sample rate and the bits in the PIN SFR are updated accordingly.

There are two ways to read the switch inputs: a raw read and a debounced read.

To read the raw pin the user reads the PIN special function register. These values are not debounced so

care should be taken using them.

Debounced pin values can be read from the SWITCH special function register. The debounce time can be

set in number of samples by setting the value in the SWDBRLD special function register. In addition to

the debounced momentary values of SW0DB – SW4DB, SWITCH also contains two additional bit fields:

SW0RE – SW4RE and SW0PE – SW4PE, with the postfixes RE and PE standing for “Release Edge” and

“Push Edge”. Whenever a switch is being closed (that is the SWx input pin is being shorted to GND) the

corresponding SWxPE bit within SWITCH becomes set for exactly one sample period. The SWxRE bit field

indicates the opposite, SWxRE will be set upon opening the switch connected to SWx.

The “Release Edge” and “Push Edge” bit fields are useful for of detecting changes at the SWx inputs,

specifically when being used in combination with momentary switches.

NOTE: SWDBRLD can only be set by a .sreg assembler directive, it cannot be set or read from the user
program.

Experimental Noize

FXCore

Audio Effects DSP

©2020 Experimental Noize

FXCore_DS_V1

Page 19

For the PIN SFR (raw level) the bits are:

Bit# Name Description

0 SW0 Switch 0

1 SW1 Switch 1

2 SW2 Switch 2

3 SW3 Switch 3

4 SW4 Switch 4

5 ENABLE State of the ENABLE pin

6 TAP State of the TAP input

7 - Always 0

8 - Always 0

9 - Always 0

10 - Always 0

11 - Always 0

12 - Always 0

13 - Always 0

14 - Always 0

15 - Always 0

For the SWITCH SFR (debounced) the bits are:

Bit# Name Description

0 SW0DB Switch 0 debounced level

1 SW1DB Switch 1 debounced level

2 SW2DB Switch 2 debounced level

3 SW3DB Switch 3 debounced level

4 SW4DB Switch 4 debounced level

5 SW0RE High for 1 period when SW0 is released

6 SW1RE High for 1 period when SW1 is released

7 SW2RE High for 1 period when SW2 is released

8 SW3RE High for 1 period when SW3 is released

9 SW4RE High for 1 period when SW4 is released

10 SW0PE High for 1 period when SW0 is pressed

11 SW1PE High for 1 period when SW1 is pressed

12 SW2PE High for 1 period when SW2 is pressed

13 SW3PE High for 1 period when SW3 is pressed

14 SW4PE High for 1 period when SW4 is pressed

15 ENABLEDB ENABLE pin debounced level

The PIN and SWITCH SFRs are updated each sample period and as a result maintain the same value for

the duration of a user’s program.

Experimental Noize

FXCore

Audio Effects DSP

©2020 Experimental Noize

FXCore_DS_V1

Page 20

USER0 and USER1

The USER0 and 1 pins allow a program to give feedback on the internal status of the program such as

blink at an LFO rate or control other parts of the design such as gain stages. These pins are written to by

use of the SET instruction.

These pins can sink or source a maximum of 10mA.

Experimental Noize

FXCore

Audio Effects DSP

©2020 Experimental Noize

FXCore_DS_V1

Page 21

Block 13: POT ADC

Experimental Noize

FXCore

Audio Effects DSP

©2020 Experimental Noize

FXCore_DS_V1

Page 22

Pins 1 to 6 are 12-bit ADC inputs for real time parameter control of the effects program. Normally these

pins are connected to the wiper of a potentiometer with one end of the potentiometer connected to

+3.3V and the other to ground. Potentiometers should not exceed 10Kohms and a small capacitor in the

0.1uf range should be connected between the wiper and ground to aid in removing noise.

There are two ways to read each potentiometer: a raw read and a filtered read.

Reading the raw value of a potentiometer is done by reading the special function registers POT0 to

POT5. This is the fastest way to read a value on the POTX pin but the user may see jitter in the value due

to the lack of filtering.

Reading the filtered or “smoothed” value from the POT0_SMTH to POT5_SMTH special function

registers will result in a more consistent read but may add some delay between a change in the voltage

applied to the POTX pin and when it is reflected in the value read. To account for this users may change

the coefficient used in the smoothing filter for each potentiometer by writing to the 5-bit special

function registers POT0_K to POT5_K. The filter equation is:

POTX_SMTH = ((POTX – POTX_SMTH) >> POTX_K) + POTX_SMTH (Calculated each sample period)

This is a digital low pass filter and the 5-bit coefficient POTX_K is the number of bits the difference

between the read value and the currently smoothed value is shifted. The larger the POTX_K value the

longer it will take for the low pass filter to settle.

All POT SFRs and their smoothing are updated each sample period and as a result maintain the same

value for the duration of a user’s program.

POT inputs are sampled at approximately 2KHz.

Block 14: Noise Generator

This block is a random number generator using the thermal noise of the FXCore to produce 32-bit

values. Programs may read the current value by reading the NOISE SFR.

Block 15: Sample Counter

This block is an unsigned 32-bit counter incremented each sample period. It is reset to 0 on reset or

program change. It may be read by reading from the SAMPLECNT SFR.

Experimental Noize

FXCore

Audio Effects DSP

©2020 Experimental Noize

FXCore_DS_V1

Page 23

 Default Programs

Prg# Name POT0 POT1 POT2 POT3 POT4 POT5 SW0 SW1 SW2 SW3 SW4 TAP

0 Small reverb Reverb time Diffusion LP filter Reverb level

1 Medium

reverb

Pre-delay Reverb time Damping Reverb level

2 Cathedral

reverb

Pre-delay Reverb time LP filter Reverb level 0 : Mono in

use in0

(left) for

both

channels

1 : Stereo in

3 Plate reverb Reverb time LP filter Ringing Reverb level

4 Delay delay time in

pot mode

Feedback LP Filter Set time

divide

Set time

divide

 Tap to set

delay or

hold to

swotch to

POT

5 Chorus Rate Depth Level

6 Flanger Speed out Speed back Feedback Level Press for

flanger to

go out,

release to

come

back

7 Through zero

flanger

Speed out Speed back Feedback Level Zero point Press for

flanger to

go out,

release to

come

back

8 Phaser Rate Sweep range Resonance Depth Set number

of stages

Set number

of stages

9 Auto-wah Sensitivity Q

Experimental Noize

FXCore

Audio Effects DSP

©2020 Experimental Noize

FXCore_DS_V1

Page 24

10 Function

generator

Frequency SINE

amplitude

Sawtooth

amplitude

Triangle

amplitude

Square

wave

amplitude

11 Compander Compression

threshold

Compression

ratio

Expansion

threshold

Expansion

ratio

Attack time Release

time

0: Compare

in0 to in1

and use the

higher

amplitude

signal in the

compander

on both

channels

1: In0 is

master and

used in the

compander,

gain result

used on

both

channels

12 Rotary +

reverb

Slow speed/

Reverb time

Fast speed/

Reverb

diffusion

Acceleration/

LP filter

Horn-drum

balance/

Reverb level

Mic

distance

 Select if

POTs

control

rotary or

reverb

parameters

Select slow

or fast

rotary

speed

13 Double pitch

shift

Shifter 0

range

Shifter 0

level

Shifter 1

range

Shifter 1

level

Dry level

14 Distortion Input gain LP frequency LP Q Output level

15 Nano looper Playback

sample

forward or

reverse

 Press to

record,

release to

play

Experimental Noize

FXCore

Audio Effects DSP

©2020 Experimental Noize

FXCore_DS_V1

Page 25

Notes:

Experimental Noize

FXCore

Audio Effects DSP

©2020 Experimental Noize

FXCore_DS_V1

Page 26

Experimental Noize Inc. reserves the right to make changes to, or to discontinue availability of, any

product or service without notice.

Experimental Noize Inc. assumes no liability for applications assistance or customer product design.

Customers are responsible for their products and applications using any Experimental Noize Inc. product

or service. To minimize the risks associated with customer products or applications, customers should

provide adequate design and operating safeguards.

Experimental Noize Inc. make no warranty, expressed or implied, of the fitness of any product or service

for any particular application.

In no even shall Experimental Noize Inc. be liable for any direct, indirect, consequential, punitive, special

or incidental damages including, without limitation, damages for loss and profits, business interruption,

or loss of information arising out of the use or inability to use any product or document, even if

Experimental Noize Inc. has been advised of the possibility of such damage.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Experimental Noize Inc.

products are not designed for and will not be used in connection with any applications where the failure

of such products would reasonably be expected to result in significant personal injury or death (“Safety-

Critical Applications”). Safety-Critical Applications include, without limitation, life support devices and

systems, equipment or systems for the operation of nuclear facilities and weapons systems.

Experimental Noize Inc. products are not designed nor intended for use in military or aerospace

applications or environments. Experimental Noize Inc. products are not designed nor intended for use in

automotive applications.

Experimental Noize Inc.

Scottsdale, AZ USA

www.xnoize.com

sales@xnoize.com

	FXCore Package
	FXCore Pin List
	Electrical Characteristics
	General Description
	Block 1: FLASH
	Block 2: I2C Bus Interface
	Block 3: Execution RAM
	Block 4: Program Counter
	Block 5: Instruction Decoder
	Block 6: Address Generation Unit (AGU)
	Block 7: CORE
	Block 8: Delay Memory
	Block 9: Low Frequency Oscillators (LFOs)
	Block 10: I2S and PLL
	Block 11: TAP Tempo
	Block 12: Binary I/O
	Block 13: POT ADC
	Block 14: Noise Generator
	Block 15: Sample Counter
	Default Programs

